微流控技术可决定备多腔复合纤维持生活物材质

日期:2019-07-11编辑作者:ca88手机版登录

近日,中国科学院大连化学物理研究所研究员秦建华领导的研究团队在利用微流控技术可控制备多腔复合纤维生物材料方面取得新进展,最新研究成果发表在Advanced Materials(DOI: 10.1002/adma.201601504)上。

中科院大连化物所 微流控技术可控制备多腔复合纤维生物材料获进展

近日,中国科学院大连化学物理研究所研究员秦建华团队在利用微流控技术制备具有生物相容性的双水相微载体方面取得新进展,研究成果发表在材料领域刊物Small上。

该研究工作巧妙利用流体在微米尺寸下的层流特性,通过自主开发的微流控芯片平台,在聚二甲基硅氧烷芯片内产生多层同轴鞘流,以此成功制备了一系列形态、结构及组成各异的微米级管状海藻酸钙纤维材料,并探索了其潜在生物应用。所制备的管状纤维材料具有典型特征:1.管腔数量可控,并呈线型排列;2.可具有分区结构,分区种类多样化;3.可由多种材料构成,材料组合方式多元化。该工作的特色在于,实现了在微米尺度下对纤维材料性质的精确调控,可制备出种类多样、性质各异的复杂纤维材料。相对于传统工艺,该方法具有制备简单、成本低、批次间差异小等特点。这种新型管状纤维材料可作为多功能载体,纤维内管腔和材料内部均可负载不同功能分子或细胞,不仅可用于生物催化,还可用于细胞共培养,干细胞分化诱导,肌肉、血管、神经组织等体外构建,在材料化学、组织工程以及再生医学等领域具有重要应用前景。

ca88手机版会员登录 1

纳升乃至皮升级液滴作为理想的微载体或反应器被广泛用于药物筛选、化学合成、组织工程等领域。传统基于乳化技术的液滴制备方法均源于油水双相(Water-in-Oil)体系,由于生物兼容性不佳,严重制约了其在生物学领域的应用。如何建立具有生物相容性的双水相液滴制备新方法是亟待解决的关键技术问题。

近年来,该所微流控芯片研究组开展了一系列基于微流控技术的新型复合功能材料合成、生物界面仿生及其生物医学应用研究,取得了显著进展,部分工作受到广泛关注。研究成果分别发表在Advanced Materials (Adv. Mater. 2014, 26, 2494–2499, Adv.Mater.2012, 24, 2191-2195),Small (Small 2015, 11, 3666–3675; Small, 2013, 9,497–503),NanoscaleNanoscale, 2013, 5, 4687-4690)和Biomaterials (Biomaterials, 2014, 35: 1390-1401) 等刊物上。

记者刘万生 通讯员于跃 5月30日,中科院大连化物所秦建华研究员带领团队在利用微流控技术可控制备多腔复合纤维生物材料方面取得新进展,最新研究成果发表在《先进材料》期刊上。

在该工作中,刘海涛等建立了一种基于微流控技术的双水相高通量液滴生成新体系,并成功用于负载具有胰岛素分泌功能的胰岛细胞。实验中,科研人员设计了一种集成化多层微流控芯片,并将聚乙二醇-葡聚糖双水相体系引入到功能化芯片体系中。通过芯片中单层膜阀的机械作用力和对双水相体系界面能的增大作用,加速其相分离,进一步可控获得高通量的“水包水”(Water-in-Water)双水相液滴。这种阵列微液滴用于负载细胞时,可以维持胰岛细胞的高存活率和胰岛素分泌功能,充分显示了其作为微凝胶活细胞3D载体的可行性。该研究建立的双水相微载体制备微流控新体系具有高通量、生物相容性好、液滴载体大小一致和精确可控等优势,在蛋白/多肽类药物负载、细胞治疗、水相功能化微粒合成和组织工程等方面具有重要应用前景。

上述工作得到国家自然科学基金的支持。

该研究工作利用流体在微米尺寸下的层流特性,通过自主开发的微流控芯片平台,在聚二甲基硅氧烷芯片内产生多层同轴鞘流,以此成功制备了一系列形态、结构及组成各异的微米级管状海藻酸钙纤维材料,并探索了其潜在生物应用。所制备的管状纤维材料具有典型特征:1.管腔数量可控,并呈线型排列;2.可具有分区结构,分区种类多样化;3.可由多种材料构成,材料组合方式多元化。实现了在微米尺度下对纤维材料性质的精确调控,可制备出种类多样,性质各异的复杂纤维材料。该方法具有制备简单,成本低,批次间差异小等特点。这种新型管状纤维材料可作为多功能载体,纤维内管腔和材料内部均可负载不同功能分子或细胞,不仅可用于生物催化,还可用于细胞共培养,干细胞分化诱导,肌肉、血管、神经组织等体外构建,在材料化学、组织工程以及再生医学等领域具有重要应用前景。

近年来,秦建华团队建立了一系列基于微流控技术的生物功能材料制备新体系、新方法,包括具有多种结构和组分的微丝、微球、微囊等微纳复合材料,并用于3D培养、药物评价和类组织器官构建等,部分工作发表在Adv. Mater.(2016, 28, 6649), Adv. Mater.(2014, 26, 2494), Adv. Mater.(2012, 24, 2191), Small(2013, 9, 497)等材料领域刊物上。

文章链接

上述工作得到国家自然科学基金的支持。

上述工作得到国家自然科学基金和中科院战略性先导科技专项的支持。

ca88手机版会员登录 2

ca88手机版会员登录 3

大连化物所微流控技术可控制备多腔纤维生物材料研究取得新进展

大连化物所利用微流控技术制备双水相生物微载体取得新进展

本文由ca88手机版会员登录发布于ca88手机版登录,转载请注明出处:微流控技术可决定备多腔复合纤维持生活物材质

关键词:

北京生科院揭破Y型周期蛋白家族在开局发育和乳

三月十四日,国际学术期刊 PLoS Genetics 在线发布了中科院东方之珠生命调查钻探院生物化学与细胞生物学商讨所曾艺...

详细>>

生态中央植物源挥发性有机化合物应对大气臭氧

气孔导度是衡量植物和大气间水分、能量及CO2平衡和循环的重要指标。近日,中国科学院寒区旱区环境与工程研究所...

详细>>

北京生科院开采防止果蝇髓质神经元去差异学工

4月11日,国际学术期刊 Development 发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所张雷研究组关于...

详细>>

光电技巧商讨所在光导纤维激光的连带组束和传

日前,中国科学院光电技术研究所自适应光学重点实验室李新阳、耿超课题组在相干偏振合成技术研究中取得新进展...

详细>>